
The Boring Topic of Stepsize Selection

Fred T. Krogh1

Boring as it may be, stepsize selection can make a big difference in the effectiveness
of an algorithm. We begin with supporting evidence and then give a brief description
of a new algorithm for doing this job. A more complete description is in [1].

We give results for the two-body problem

i fi yi(2kπ) yi((2k + 1)π)
1 y2 1− e −1− e
2 −y1/

√
y2

1 + y2
3 0 0

3 y4 0 0

4 −y3/
√
y2

1 + y2
3

√
(1 + e)/(1− e) −

√
(1− e)/(1 + e),

solved for t from 0 to 16π, with errors only computed at multiples of π, and for the
the Euler Equations

i fi yi(4kc) yi((4k + 1)c) yi((4k + 2)c) yi((4k + 3)c)
1 y2y3 0 1 0 −1
2 −y1y3 1 0 −1 0
3 −.51y1y2 1 .7 1 .7,

from t = 0 to t = 28c, where c = 1.862640802332738552030281220579, and errors
only computed at multiples of c. The codes tested are

dop853: The code from [2], thanks Ernst and happy 60th.
dxrk8: A code, [3], derived from dop853, using the stepsize selection introduced

here.
rksuite8: The 8th order Fortran 77 version of the code described in [4].
rksuite5: As for rksuite8, but 5th order
dxrk8s: Like dxrk8, but using the stepsize selection described in [5] / [6]. We

used Eq. (31) in [5], with k = 8 and b = 4.
diva: A variable order Adams code of ours similar to what is described in [7].
diva2: Diva with the two-body problems modeled as second order equations.

Since different codes use a different internal scaling of the users input tolerance, we
have modified the value of the tolerance passed to the codes so that results are more
comparable. An absolute error tolerance is used in all cases.

In the tables, E is the largest ratio for (global error) / tolerance, E8 is the 8th largest
such ratio, NF is the average number of function evaluations required for a single
case, Secs is the running time and the remaining columns give the counts for (global
error) / tolerance for the ranges indicated.

If dop853 only did the extra derivatives required for interpolation when they were
needed the 4134 below would be about 3370 and 2310 would be about 1940.

1email: fkrogh@mathalacarte.com, Math à la Carte, Inc., P.O. Box 616, Tujunga, CA 91043

1



Elliptical Two Body Problems, for
tol=10−3 × .96j, j = 0, . . . , 400 e = .1 + .01j, j = 0, . . . , 80

100- 101- 102- 103- 104-
code E E8 NF Secs 101 102 103 104 105

dop853 15684 8181 4134 52.2 7824 15219 7018 2417 3
dxrk8 12591 12190 2287 29.6 1765 9475 17211 3927 103
dxrk8s 81864 64940 2746 36.7 68 1102 14630 13595 3086
rksuite8 16231 13062 2629 98.5 2431 12734 14032 3254 30
rksuite5 24825 21001 4758 196.4 4987 14369 7512 5434 179
diva 22559 18206 1918 136.6 3171 14353 8768 5929 260
diva2 20063 17242 1739 130.7 5121 14798 7212 5106 244

Euler Equations, for tol=10−3 × .96j, j = 0, . . . , 400

100- 101- 102- 103-
code E E8 NF Secs 101 102 103 104

dop853 1564.1 1216.9 2310 0.28 15 54 308 24
dxkr8 10.2 7.1 1510 0.20 400 1 0 0
dxrk8s 9.1 8.7 1516 0.21 401 0 0 0
rksuite8 37.6 28.2 1704 0.65 366 35 0 0
rksuite5 26.0 16.9 2710 1.16 365 36 0 0
diva 3.9 2.4 1267 0.72 401 0 0 0

We offer the following observations.

1. Comparing dop853 and dxrk8, we see a better control of the stepsize makes a
very noticeable difference.

2. The comparison of dxrk8 and dxrk8s, suggests that the least squares error
control used in dxrk8 works better than the digital filtering approach of dxrk8s
when big stepsize changes are needed. The two are essentially the same for the
Euler equations. (These codes were as close as we could make them in terms
of the additional restrictions placed on the stepsize.)

3. Dxrk8 does better than rksuite8 in terms of function evaluations and the over-
head for rksuite is surprisingly high. Rksuite8 does not have an interpolation
facility, and thus it could not provide the G-Stop feature (finding zeros of
functions of the variables involved in the solution) which is provided by dxrk8.
Rksuite5 is only included to show the value of high order.

4. Diva results are given as (unneeded) further evidence that Adams methods are
good if derivatives are expensive to compute, and bad if they are not.

The least squares error control assumes errors can be modeled with∣∣∣∣ estimated error

requested accuracy

∣∣∣∣ = ρn ≈ eφnhpn, (1)

and then fits φn+1−k with a linear or quadratic function of k. The fit is a least
squares fit assuming that past residuals are to be weighted down by wk/2, where

2



0 < w < 1, and k = 1, 2, . . . , ∞. The results here used w = .1, but the results are
not very dependent on the choice of w. We believe the quadratic model is likely to
work better for a multistep code or low order Runge-Kutta code, but for the high
order Runge-Kutta code we have been working with here, the linear model does a
better job.

This least squares problem requires very little computation. At the end of step n,
we can compute φn given ρn and hn. The residuals for the normal equations for this
least squares problem can be computed with

r1 = φn + wr1
r2 = r1 + wr2
r3 = r2 + wr3 (Not needed for the linear case),

(2)

where the “=” sign is being used for assignment. The value of the constant term,
φ̂n+1 = the “expected” value for φn+1, is simply

1− w2

w
r1 −

(1− w)2

w
r2 linear, (3)

1− w
w2

[
(1 + w + w2)r1 + (−2 + w + w2)r2 + (1− 2w + w2)r3

]
quadratic. (4)

The coefficients used here can of course be precomputed in parameter statements.
Given φ̂n+1 it is an easy matter to compute hn+1. After the second step, or after a
rejected step, the linear model can be used to generate the ri using

r1 =
∞∑
k=1

wk−1 [φ2 − (φ2 − φ1)(k − 1)] =
wφ1 + (1− 2w)φ2

(1− w)2

r2 =
∞∑
k=1

kwk−1 [φ2 − (φ2 − φ1)(k − 1)] =
2wφ1 + (1− 3w)φ2

(1− w)3

r3 =
∞∑
k=1

k(k + 1)

2
wk−1 [φ2 − (φ2 − φ1)(k − 1)] =

3wφ1 + (1− 4w)φ2

(1− w)4
.

(5)

That’s the easy part. For the hard part we used an approach described in [8], and
that sort of approach is more important than the details here. Although what we
have seems to work, some of the choices are difficult to justify. Especially for large
values of e in the two body problems, there are very sudden and dramatic changes
in the behavior of φ. In such cases it is desirable that a code avoids bad choices that
have been made earlier in the computation.

There were two things in addition to the algorithm above involved in the choice of
h. Most important is to remember values of h that led to rejected steps, and to
be cautious about increasing the stepsize when it is close to values that failed in
the past. The other is to make use of the ratio of the order 5 and order 3 error
estimates. Making use of this ratio not only provides a little additional caution
when such is desirable, but it also provides a very cheap test for stiffness that at
least for y′ = −cy,with large and small values of c works very well. We have just
enough space to describe what was done.

3



Set α = 1.5 when starting. Never choose φ̂n+1 > φ̂n + .75 log(α ∗O5/O3), where O5

and O3 are the order 5 and order 3 error estimates. If this test results in a φ̂n+1

smaller than we would have picked otherwise, set α = .6α. Then if α < .1 and O5 >
O3 give a one time “stiff” diagnostic and don’t touch α again. If α < .1 and O5 ≤ O3,
set α = 1.5. When this test does not restrict φ̂n+1, set α = 1.5.

In the case of multistep methods we sample φ more frequently and thus in effect
extrapolate a shorter distance. For Adams and BDF codes (no matter what repre-
sentation of the interpolating polynomial is used), since the pth divided difference
approximates the pth derivative we see from [7, p. 24, Eq. 2.1] a more exact model
would have the error ratio given by ρn = hn(hn + hn−1) · · · (hn + · · · + hn−p+1)e

φn .
Using this model should do a much better job, than what we have used in the past.
Given φ̂n+1 we have a nonlinear equation in hn+1 to solve (with ρn+1 = 1).

References

[1] Fred T. Krogh, Least Squares Based Stepsize Selection for Ordinary Dif-
ferential Equations. Technical report, Math à la Carte, Inc. (2000). Submitted
to TOMS, Currently at http:\\mathalacarte.com/fkrogh.

[2] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential
Equations I, Springer Verlag, Berlin, second revised edition (1993).

[3] Fred T. Krogh, Explicit Runge-Kutta Method for Ordinary Differen-
tial Equations (DXRK8). Technical report, Math à la Carte, Inc., Tu-
junga, CA (Feb. 1997) 14.2–01—14.2–10. With registration, available from
http://mathalacarte.com/cb/mom.fcg/ya65.

[4] R. W. Brankin and I. Gladwell, Algorithm 771. rksuite 90: Fortran software
for ordinary differential equation initial value problems, ACM Transactions
on Mathematical Software 23, 3 (Sept. 1997) 402–415.

[5] Gustaf Söderlind, Digital filters in adaptive time-stepping, ACM Transactions
on Mathematical Software 29, 1 (March 2003) 1–26.

[6] Kjell Gustafsson, Control theoretic techniques for stepsize selection in explicit
Runge-Kutta methods, ACM Transactions on Mathematical Software 17,
4 (Dec. 1991) 533–554.

[7] Fred T. Krogh, Changing stepsize in the integration of differential equations
using modified divided differences, in Dale G. Bettis, editor, Proceedings of
the Conference on the Numerical Solution of Ordinary Differential
Equations, Lecture Notes in Mathematics 362, 22–71, Springer Verlag, Berlin
(1974).

[8] Fred T. Krogh, On developing mathematical software, J. Computational
and Applied Mathematics 185 (Jan. 2006) 196–202. Preprint at http:

//mathalacarte.com/fkrogh.

4


